
52 Appendix A2 Exported Function Summary
FCubicSpline
bool FCubicSpline(VECTOR vY, VECTOR vT, int cT, double *pdAlpha,
VECTOR vG, VECTOR vX, double *pdCV, double *pdPar, bool fAuto,
int iDesiredPar);
vY[cT] in: variable of which to compute spline
vT[cT] in: x-variable or NULL (then against time)
cT in: number of observations, T
dAlpha in: bandwidth parameter (if ¡= 1e-20: 1600 is used)
vG[cT] out: natural cubic spline, according to vX (sorted vT)
pdCV in: NULL or pointer
out: cross-validation value
vX[cT] in: NULL or vector
out: xaxis (sorted vT) for drawing, only if vT != NULL
pdPar in: NULL or pointer
out: equivalent number of parameters
iDesiredParin: desired equivalent no of parameters or 0
fHP in: FALSE: use spline, TRUE: Hodrick-Prescott
Return value
Returns TRUE if successful, FALSE if out of memory.
FftComplex, FftReal, FftDiscrete
void FftComplex(VECTOR vXr, VECTOR vXi, int iPower, int iDir);
void FftReal(VECTOR vXr, VECTOR vXi, int iPower, int iDir);
bool FftDiscrete(VECTOR vXr, VECTOR vXi, int cN, int iDir);
vXr[n] in: vector with real part, n =2
iPower
(discrete FFT:
n = cN)
out: FFT (or inverse FFT) real part
vXi[n] in: vector with imaginary part, n =2
iPower
(discrete
FFT: n = cN)
out: FFT (or inverse FFT) imaginary part
iPower in: the vector sizes is 2
iPower
cN in: indicates whether an FFT (iPower ≥ 1)oran
inverse FFT must be performed (iPower ≤ 0)
Return value
FftDiscrete returns FALSE if there is not enough memory, TRUE otherwise.
Also see under fft and dfft.
FIsInf, FIsNaN
bool FIsNaN(double d);
bool FIsInf(double d);
d in: value to check
Komentarze do niniejszej Instrukcji